The LOFAR Two Meter Sky Survey(s), algorithms and science

LoTSS wide, deep, and ultra-deep

Cyril Tasse Observatoire de Paris – GEPI/USN Rhodes University

for the LOFAR Surveys KSP

The LOFAR Two-meter Sky Survey : LOTSS (Tier-1)

LOTSS : LOFAR Two-meter Sky Survey

20% of the northern sky is observed.

50% of the observed data is partially processed.

Allocated 3750 hrs of observations to reach 50% completeness in 2 years

Red observed, yellow observed in next 6 months, green observed in next 2 years.

The best image you can ever get in selfcal

Ionospheric disturbance + Faraday rotation

Station lobes

Interferometry

... When Direction Dependent Effects (DDE) become a problem : Beam

LOFAR stations are phased arrays

- Beam is variable in frequency and time
- Projection of the dipoles in the sky is non trivial
- Beam can be station-dependent
- Individual clock effects

--> Strong effects on polarisation

lonosphere

Good ionosphere

Bad ionosphere

Images have 3 arcmin resolution

Ger de Bruyn & LOFAR EoR team

Interferometry

Interferometry

2nd issue : Data Volumes

Tier-1 LOFAR Survey : to be observed 48 Pbytes of Raw data → ~39Eiffel towel size dvd stacks

DVD

Third issue : software

No existing software implementing

(i) generic piecewise constant,
 (ii) DD-simultaneous,
 (iii) full Jones,
 (iv) (Cal+Im) RIME solving

RIME Calibration

Antenna 4

Complex Optimisation: Jacobian & Hessian (Read Tasse 2014,

Wirtinger derivative definition « reorganises » the process and data : the Jacobian and Hessian become sparse and compact

Smirnov & Tasse 2015)

$$\frac{\partial \overline{z}}{\partial z} = 0$$
 and $\frac{\partial z}{\partial \overline{z}} = 0$

Antenna 4

Dec (J2000)

And it also works on ATCA data (Circinus a)

Direction independent calibration

DDE with Wirtinger

And it also works on VLA data

VLA beam model used to construct the Jones matrices

• APERTIF@WSRT

 $\mathbf{\hat{c}}$

DI-Selfcaled image

Credit : Alexander Kutkin

APERTIF@WSRT

With kMS+DDF 11 directions

П

Credit : Alexander Kutkin

Ð

•

XMM-LSS field with GMRT (20 hours – band 3 [250 -500MHz])

With 6 rounds of DI selfcal

XMM-LSS field with GMRT (20 hours – band 3 [250 -500MHz])

With kMS+DDF

ThunderKAT fields (Circinus X-1 45 min integration)

Without DDE Rms 60uJy/beam

Credit : Mickael Coriat

ThunderKAT fields (Circinus X-1 45 min integration)

With kMS+DDF : 4 directions, Reaching 19uJy/beam rms

MIGHTEE COSMOS (18 hours of data)

"the best I could be bothered to get with traditional selfcal" – Ian Heywood

MIGHTEE COSMOS (18 hours of data)

With kMS+DDF : 10 directions, 1 round of DD calibration Reaching 2.2uJy/beam rms

LOTSS – First Data Release

LOTSS – First Data Release

LOTSS – First Data Release

A quick entracte

LoTSS data release 1

325,694 entires in the raw PyBDSF catalogue.

Corresponds to 318,520 radio sources after deblending, artefact rejection and joining multiple component sources (including extensive efforts to visually inspect ~10,000 sources).

231,716 have counterparts in Pan-STARRS or WISE and for these photometric redshifts are are estimated.

	Number	Number	ID
		with ID	fraction
All Sources	$318,\!520$	231,716	0.73
LR	299,730	$221,\!269$	0.74
LGZ	$11,\!989$	$7,\!144$	0.60
Deblending	$2,\!435$	2,338	0.96
Bright galaxy	965	965	1.00
No ID possible	$3,\!401$	0	0.00

The final LoTSS-DR1 catalogue contains radio sources, optical counter parts and photometric redshifts.

Williams, Duncan, Hardcastle, Sabatar et al.

Examples of LOFAR galaxy zoo entries showing

New data products in LoTSS -DR2

Current pipeline products:

- 6" resolution Stokes I image
 20" resolution Stokes I image
- 3 channel images over band
- 20" resolution Stokes V image
 20" resolution Stokes QU cubes (480) planes)
- Very lów resolution Stokes QU cubes (480 planes)
- Dynamic spectra of targeted sources
 Data calibrated in a particular direction with all other source subtracted (allows easy reimaging, source subtraction etc)

Stokes I images at high (6") and low (20") resolution

24

Furthering the LOFAR surveys

Optical followup — WEAVE-LOFAR (Smith+ 2016) will use WEAVE on the WHT and soon begin obtaining spectra for ~a million LOFAR sources.

Radio recombination lines —

LoTSS data have sufficient frequency resolution for spectral line work and the data are being analysed to search for RRLs (e.g. Emig+ 2018).

0.3arcsec resolution — LOFAR surveys data are recorded using the full international LOFAR array allowing for 0.3" imaging over the entire surveyed region (images from Sweijen van Weeren, Jackson, Morabito+)

~20 uJy/beam rms

1 A C.

~20 uJy/beam rms

Mesure de rotation ELAIS

In the local universe, AGN in massive galaxies *are always on*

Stellar mass

Black-Hole mass

Sabater et al.

Relic AGN or restarted?

Jet dynamics Feedback and duty cycle

Mahatma et al.

Nearby galaxies

Nearby galaxies

- Study the Radio to Star Formation relation (FIR & UV)

Heesen et al.

- Cosmic ray electron transport

Nearby galaxy groups

Nikiel-Wroczyński et al. In prep

Using

- SDSS
- NVSS
- FIRST

17/107 show signs of intergalactic structure Study of the magnetic field of the IGM

LSS Filaments

- Relativistic electrons don't do RM

- How large? 3.4 Mpc

- Lobes expanding in an empty region

- Large-scale structure filaments ? from SDSS by Chen+15, 16 Excess of 3 filaments for North lobe

O'Sullivan et al.

Galaxy clusters

Galaxy clusters

See Chiara Ferarri talk

Abell 1914

Abell 1132

Mandal+ (2018, in prep)

Wilber+ (2017)

ABELL 2256

Radio (LOFAR) X-rays (XMM)

Merging cluster
z = 0.05

Van Weeren et al. In prep

Thank you !